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Abstract: - In this paper, the Euler and Navier-Stokes equations are solved, according to a finite volume 
formulation and symmetrical unstructured discretization, applied to the problem of a blunt body in two-
dimensions. The work of Gaitonde is the reference one to present the fluid dynamics and Maxwell equations of 
electromagnetism based on a conservative and finite volume formalisms. The Jameson and Mavriplis 
symmetrical scheme is applied to solve the conserved equations. Two types of numerical dissipation models are 
applied, namely: Mavriplis and Azevedo. A spatially variable time step procedure is employed aiming to 
accelerate the convergence of the numerical schemes to the steady state solution. Effective gains in terms of 
convergence acceleration are observed with this technique (see Maciel). The results have proved that, when the 
Jameson and Mavriplis scheme is employed with an unstructured alternated discretization, better contours of 
proprieties are obtained (see Maciel). Moreover, an increase in the shock standoff distance is observed, which 
guarantees a minor increase in the temperature at the blunt body nose (minor armour problems), and a minor 
increase in the drag aerodynamic coefficient. 
 
Key-Words: Euler  and  Navier-Stokes   equations,   Magnetogasdynamics   formulation, Jameson and 
Mavriplis algorithm, Unstructured spatial discretization, Finite volumes, Two-dimensional space. 
 
1 Introduction 
The effects associated with the interaction of 
magnetic forces with conducting fluid flows have 
been profitably employed in several applications 
related to nuclear and other ([1]) technologies and 
are known to be essential in the explanation of 
astrophysical phenomena. In recent years, however, 
the study of these interactions has received fresh 
impetus in the effort to solve the problems of high 
drag and thermal loads encountered in hypersonic 
flight. The knowledge that electrical and magnetic 
forces can have profound influence on hypersonic 
flowfields is not new ([2] and [3]) – note increased 
shock-standoff and reduced heat transfer rates in 
hypersonic flows past blunt bodies under the 
application of appropriate magnetic fields. The 
recent interest stems, however, from new revelations 
of a Russian concept vehicle, known as the AJAX 
([4]), which made extensive reference to 
technologies requiring tight coupling between 
electromagnetic and fluid dynamic phenomena. A 
magnetogasdynamics (MGD) generator was 
proposed ([5]) to extract energy from the incoming 
air while simultaneously providing more benign 
flow to the combustion components downstream. 
The extracted energy could then be employed to 
increase thrust by MGD pumping of the flow exiting 

the nozzle or to assist in the generation of a plasma 
for injection of the body. This latter technique is 
known to not only reduce drag on the body but also 
to provide thermal protection ([6]). 
 In addition to daunting engineering challenges, 
some of the phenomena supporting the feasibility of 
an AJAX type vehicle are fraught with controversy 
(see, for example, [7]). Resolution of these issues 
will require extensive experimentation as well as 
simulation. The latter approach requires integration 
of several disciplines, including fluid dynamics, 
electromagnetics, chemical kinetics and molecular 
physics amongst others. This paper describes a 
recent effort to integrate the first two of these, 
within the assumptions that characterize ideal and 
non-ideal magnetogasdynamics. 
 In [8], the Euler and Navier-Stokes equations 
were solved, according to a finite volume 
formulation and symmetrical structured 
discretization, applied to the problem of a blunt 
body in two-dimensions. The work of [9] was the 
reference one to present the fluid dynamics and 
Maxwell equations of electromagnetism based on a 
conservative and finite volume formalisms. The [10] 
and the [25] symmetrical schemes were applied to 
solve the conserved equations. Two types of 
numerical dissipation models were applied, namely: 
[11] and [12]. A spatially variable time step 
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procedure was employed aiming to accelerate the 
convergence of the numerical schemes to the steady 
state solution. The results proved that, when the [10] 
scheme was employed, an increase in the shock 
standoff distance was observed, which guaranteed a 
minor increase in the temperature at the blunt body 
nose, and a minor increase in the drag aerodynamic 
coefficient. 
 In this paper, the Euler and Navier-Stokes 
equations are solved, according to a finite volume 
formulation and symmetrical unstructured 
discretization, applied to the problem of a blunt 
body in two-dimensions. The work of [9] is the 
reference one to present the fluid dynamics and 
Maxwell equations of electromagnetism based on a 
conservative and finite volume formalisms. The [10] 
symmetrical scheme is applied to solve the 
conserved equations. Two types of numerical 
dissipation models are applied, namely: [11] and 
[12]. A spatially variable time step procedure is 
employed aiming to accelerate the convergence of 
the numerical schemes to the steady state solution. 
Effective gains in terms of convergence acceleration 
are observed with this technique [13-14]. 
 The results have proved that, when the [10] 
scheme is employed with an unstructured alternated 
discretization, better contours of proprieties are 
obtained (see [15-16]). Moreover, an increase in the 
shock standoff distance is observed, which 
guarantees a minor increase in the temperature at the 
blunt body nose (minor armour problems), and a 
minor increase in the drag aerodynamic coefficient. 
 
2 Formulation to a Flow Submitted to 
a Magnetic Field 
The Navier-Stokes equations to a flow submitted to 
a magnetic field in a perfect gas formulation are 
implemented on a finite volume context and two-
dimensional space. The Euler equations are obtained 
by disregarding of the viscous vectors. These 
equations in integral and conservative forms can be 
expressed by: 
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where: Q is the vector of conserved variables, V is 
the computational cell volume, F



 is the complete 
flux vector, n  is the unity vector normal to the flux 
face, S is the flux area, Ee and Fe are the convective 
flux vectors or the Euler flux vectors considering the 

contribution of the magnetic field in the x and y 
directions, respectively, and Ev and Fv are the 
viscous flux vectors considering the contribution of 
the magnetic field in the x and y directions, 
respectively. The unity vectors i



 and j


 define the 
system of Cartesian coordinates. The vectors Q, Ee, 
Fe, Ev and Fv can be defined, according to [9], as 
follows: 
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in which: ρ is the fluid density; u and v are the 
Cartesian components of the velocity vector in the x 
and y directions, respectively; Z is the flow total 
energy considering the contribution of the magnetic 
field; Bx and By are the Cartesian components of the  
magnetic field vector active in the x and y directions, 
respectively; P is the pressure term considering the 
magnetic field effect; Rb is the magnetic force 
number or the pressure number; µM is the mean 
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magnetic permeability, with the value 4πx10-7 
T.m/A to the atmospheric air; V



 is the flow 
velocity vector in Cartesian coordinates; B



 is the 
magnetic field vector in Cartesian coordinates; the 
τ’s are the components of the viscous stress tensor 
defined at the Cartesian plane; qx and qy are the 
components of the Fourier heat flux vector in the x 
and y directions, respectively; qJ,x and qJ,y are the 
components of the Joule heat flux vector in the x 
and y directions, respectively; Reσ is the magnetic 
Reynolds number; and σ is the electrical 
conductivity. 
 The viscous stresses, in N/m2, are determined, 
according to a Newtonian fluid model, by: 
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where µ is the fluid molecular viscosity. In this 
work, the empiric formula of Sutherland was 
employed to the calculation of the molecular 
viscosity (details in [17]). 
 Z is the total energy defined by: 
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The pressure term is expressed by: 
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The magnetic force number or pressure number is 
determined by: 
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The laminar Reynolds number is defined by: 

 
∞

∞∞=
μ

LVρRe ,                                                   (8) 

in which “∞” represents freestream properties, V∞ 
represents the characteristic flow velocity and L is a 
characteristic length of the studied configuration. 
 The magnetic Reynolds number is calculated by: 

 ∞∞∞= σμLV Mσ ,Re .                                          (9) 

The components of the Fourier heat flux vector are 
expressed by: 
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with: 

 kCpμ∞=Pr  = 0.72, is the laminar Prandtl 
number;                                                                (11) 

 
ρpγ

VM ∞
∞ = , is the freestream Mach number; 

(12) 
 γ is the ratio of specific heats to a perfect gas, 
with a value of 1.4 to atmospheric air.  
 
 The components of the Joule heat flux vector, 
which characterizes the non-ideal formulation, are 
determined by: 
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3 Jameson and Mavriplis 
Unstructured Algorithm in 2D 

First of all, the system geometrical parameters are 
defined. Afterwards, the numerical scheme will be 
described. The cell volume on an unstructured 
context is defined by: 
  ( ) ( )1213233231215.0 nnnnnnnnnnnni yxxyyxyxxyyxV ++−++= , 

(14) 
 
with n1, n2 and n3 being the nodes of a given 
triangular cell. The description of the computational 
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cell and its nodes, flux interfaces and neighbours are 
shown in Fig. 1. 

 
Figure 1 : Schematic of a cell and its neighbours, 

nodes and flux interfaces. 
 
 The area components at the “l” interface are 
defined by: 
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where l

xn , l
yn  and Sl are defined as: 
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Expressions to ∆xl and ∆yl are given in Tab. 1. 
 

Table 1. Values of ∆xl and ∆yl. 
 

Interface ∆xl ∆yl 
l = 1 12 nn xx −  12 nn yy −  
l = 2 23 nn xx −  23 nn yy −  
l = 3 31 nn xx −  31 nn yy −  

 
Now, Equation (1) can be rewritten following an 
unstructured spatial discretization context ([18] and 
[10]) as: 

 ( ) 0)( =+ iii QCdtQVd ,                                 (17) 

where: 
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is the approximation to the flux integral of Eq. (1). 
In this work, one adopts that, for example, the flux 
vector Ee at the flux interface l = 1 is obtained by the 
arithmetical average between the Ee vector 
calculated at the cell “i” and the Ee vector calculated 
at its neighbor ne1. The viscous flux vectors are 
calculated in a symmetrical form as demonstrated in 
section 4. 
 The spatial discretization proposed by the 
authors is equivalent to a symmetrical scheme with 
second order accuracy, on a finite difference context. 
The introduction of an artificial dissipation operator 
“D” is necessary to guarantee the scheme numerical 
stability in presence of, for example, uncoupled 
odd/even solutions and non-linear stabilities, as 
shock waves. Equation (17) can, so, be rewritten as: 

 ( ) [ ] 0)()( =−+ iiii QDQCdtQVd .                 (19) 

 The time integration is performed by a hybrid 
Runge-Kutta method of five stages, with second 
order accuracy, and can be represented in general 
form as: 
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where: k = 1,...,5; m = 0 until 4; α1 = 1/4, α2 = 1/6, 
α3 = 3/8, α4 = 1/2 and α5 = 1. [10] suggest that the 
artificial dissipation operator should be evaluated 
only in the first two stages as the Euler equations 
were solved (m = 0, k = 1 and m = 1, k = 2). [19] 
suggest that the artificial dissipation operator should 
be evaluated in alternated stages as the Navier-
Stokes equations were solved (m = 0, k = 1, m = 2, 
k = 3 and m = 4, k = 5). These procedures aim CPU 
time economy and also better damping of the 
numerical instabilities originated from the 
discretization based on the hyperbolic 
characteristics of the Euler equations and the 
hyperbolic/parabolic characteristics of the Navier-
Stokes equations. 
 
3.1 Artificial dissipation operator 
The artificial dissipation operator implemented 
in the [10] schemes has the following structure, 
based on the works of [20-21]: 
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 ( ) ( ) ( )iii QdQdQD )4()2( −= ,                          (21) 

where: 
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named undivided Laplacian operator, is responsible 
by the numerical stability in the presence of shock 
waves; and 
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named bi-harmonic operator, is responsible by the 
background stability (for example: instabilities 
originated from uncoupled odd/even solutions). In 
this last term, 

  ( ) ( ) ( )ineineinei QQQQQQQ −+−+−=∇ 321
2 . (24) 

In the d(4) operator, iQ2∇  is extrapolated from the 
value of the real neighbor cell every time that it 
represent a ghost cell. The ε terms are defined, for 
example, as: 
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with: 
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representing a pressure sensor employed to identify 
regions of elevated gradients. The K(2) and K(4) 
constants has typical values of 1/4 and 3/256, 
respectively. Every time that a neighbor cell 
represents a ghost cell, one assumes, for example, 
that ighost νν = . 
 The Ai terms can be defined according to two 
models implemented in this work: (a) [11] and (b) 
[12]. In the first case, the Ai terms are contributions 
from the maximum normal eigenvalue of the Euler 
equations integrated along each cell face. Hence, 
they are defined as follows: 

(a) [11] model: 
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where “a” represents the sound speed. 

(b) [12] model: 

 iii tVA ∆= ,                                                   (28) 

which represents a scaling factor, according to 
structured meshes, with the desired behavior to the 
artificial dissipation term: (i) bigger control volumes 
result in bigger value to the dissipation term; (ii) 
smaller time steps also result in bigger values to the 
scaling term. 
 
4 Calculations of the Viscous 
Gradients 

The viscous vectors at the flux interface are 
obtained by the arithmetical average between the 
primitive variables at the right and left states of the 
flux interface, as also the arithmetical average of the 
primitive variable gradients, also considering the 
right and left states of the flux interface. The 
gradients of the primitive variables present in the 
viscous flux vectors are calculated employing the 
Green theorem, which considers that the gradient of 
a primitive variable is constant in the volume and 
that the volume integral which defines this gradient 
is replaced by a surface integral. This methodology 
to calculation of the viscous gradients is based on 
the work of [22]. As an example, one has to xu ∂∂ : 
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5 Dimensionless, Initial and Boundary 
Conditions, Computational Domain 
and Employed Meshes 
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5.1 Dimensionless 
The dimensionless employed to the case of the 
flowfield submitted to a magnetic field in two-
dimensions are detailed as follows: ρ is 
dimensionless in relation to ρ∞; the u and v 
Cartesian components of velocity are dimensionless 
in relation to the freestream speed of sound, a∞; p is 
dimensionless in relation to the product between ρ∞ 
and the squared of a∞; the translational/rotational 
temperature is dimensionless in relation to a∞; the 
molecular viscosity is dimensionless in relation to 
µ∞; the Cartesian components of the induced 
magnetic field is dimensionless by B∞; the magnetic 
permeability of the mean is dimensionless by ∞µ ,M ; 
and the electric conductivity is dimensionless by σ∞. 
 
5.2 Initial and boundary conditions 
5.2.1 Initial condition 

The initial condition adopts freestream flow 
properties to the conserved variables. Due to the 
present dimensionless, the vector of conserved 
variables in the field is determined as follows: 
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where θ is the angle of attack, M∞ is the freestream 
Mach number, Bx,∞, By,∞, B∞ are the Cartesian 
components of the induced magnetic field and the 
modulus of the induced magnetic field, and Rb is 
calculated according to Eq. (7). 
 
5.2.2 Boundary conditions 

The boundary conditions are basically of three types: 
solid wall, entrance and exit. These conditions are 
implemented in special cells named “ghost cells”. 

(a) Solid wall condition: In the inviscid case, this 
condition imposes the flow tangency at wall. This 
condition is satisfied considering the velocity 
component tangent to the wall relative to the ghost 
cell as equal to the respective component of the real 
neighbor cell. At the same time, the velocity 
component normal to the wall relative to the ghost 
cell is equaled to the negative of the respective 

component of the real neighbor cell. This procedure 
leads to a system of equations which results to: 
 
 ( ) ( ) ryxrxyg vnnunnu 222 −+−=    and  

 ( ) ( ) ryxryxg vnnunnv 222 −+−= ,                     (31) 
 
where “g” indicate ghost cell properties and “r” 
indicate real cell properties. In the viscous case, the 
Cartesian components of the velocity vector of the 
ghost cells are equaled in value, but with the 
opposed signal, with the respective Cartesian 
components of the real cell.  
 
 rg uu −=    and   rg vv −= .                              (32) 
 
In both cases, inviscid and viscous, the pressure 
gradient normal to the wall is equaled to zero, 
according to an inviscid formulation in the former 
case and to the boundary layer condition in the latter. 
The same hypothesis is employed to the temperature 
gradient normal to the wall, considering an adiabatic 
wall. With these conditions, ghost cell density and 
pressure are extrapolated from the respective values 
of the real neighbor cell (zero order extrapolation). 
 The Cartesian components of the induced 
magnetic field at the wall to the ghost cells are fixed 
with their initial values. The magnetic permeability 
is considered constant with its initial value. The 
total energy Z to the ghost cell is calculated by: 

( ) ( )
ggM

gygx
bgg

g

g
g

BB
Rvu

p
Z

ρµ

+
+++

ρ−γ
=

,

2
,

2
,22 5.05.0

1
. 

(33) 
 
(b) Entrance condition: 

(b.1) Subsonic flow: Five properties are specified 
and one is extrapolated, based on the analysis of 
information propagation along the characteristic 
directions in the calculation domain ([23]). In other 
words, five characteristic directions of information 
propagation points to inside the computational 
domain and should be specified, to the subsonic 
flow. Only the characteristic direction associated 
with the “(qn-a)” eigenvalue cannot be specified and 
should be determined by interior information of the 
calculation domain. The pressure is the extrapolated 
variable from the real neighbor cell. Density, 
Cartesian velocity components and Cartesian 
induced magnetic field components have their 
values determined by the initial condition. The total 
energy is determined by Eq. (33). 
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(b.2) Supersonic flow: All variables are fixed with 
their initial values. 
 
(c) Exit condition: 

(c.1) Subsonic flow: Five characteristic directions of 
information propagation points outward from the 
computational domain and should be extrapolated 
from the interior information. The characteristic 
direction associated with the eigenvalue “(qn-a)” 
should be specified because points inward the 
calculation domain ([23]). In this case, the ghost cell 
pressure is specified by its initial value. Density, 
Cartesian velocity components and Cartesian 
induced magnetic field components are extrapolated 
and the total energy is determined by Eq. (33). 
(c.2) Supersonic flow: All variables are extrapolated 
from the interior domain due to the fact that all six 
characteristic directions of information propagation 
of the Euler equations point outward from the 
calculation domain and, with it, nothing can be fixed. 
 
5.3 Computational domain 
 

 
Figure 2 : Blunt body computational domain. 

 
 Figure 2 presents the geometry and the 
computational domain employed in the unstructured 
simulations in two-dimensions. This figure 
describes a blunt body with nose ratio of 1.0m and 
the far field located at twenty times the nose ratio in 
relation to the configuration nose. The domain 
presents three frontiers, as related in the boundary 
conditions, namely: solid wall, entrance and exit. 
 
5.4 Employed meshes 
Figures 3 and 4 present the meshes employed to 
the inviscid unstructured simulations in two-
dimensions for the case of a flow submitted to 
an induced magnetic field around a blunt body. 

Two cases are distinguished: SS – Same Sense, 
and AS – Alternated Sense.  

 
Figure 3 : Unstructured mesh to the inviscid 2D case (SS). 

 
Figure 4 : Unstructured mesh to the inviscid 2D case (AS). 

 
Figure 5 : Unstructured mesh to the viscous 2D case (SS). 
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Figure 6 : Unstructured mesh to the viscous 2D case (AS). 

 
Figure 5 and 6 exhibits the meshes used to the 
viscous simulations. The mesh to the viscous 
case presents an exponential stretching in the η 
direction of 7.5%. The mesh to the inviscid case 
is composed of 7,440 triangular cells and 3,843 
nodes, which corresponds to a finite difference 
mesh of 63x61 points. The mesh to the viscous 
case is composed by the same number of cells 
and nodes, also corresponding to a mesh of 
63x61 points. 
 
6 Results 

Tests were performed in a notebook with processor 
INTEL PENTIUM Dual Core of 2.3GHz of clock 
and 2.0GBytes of RAM. As the interest of this work 
is steady state problems, one needs to define a 
criterion which guarantees that such condition was 
reached. The criterion adopted in this work was to 
consider a reduction of no minimal three (3) orders 
in the magnitude of the maximum residual in the 
domain, a typical criterion in the CFD community. 
The residual to each cell was defined as the 
numerical value obtained from the discretized 
conservation equations. As there are six (6) 
conservation equations to each cell, the maximum 
value obtained from these equations is defined as 
the residual of this cell. Thus, this residual is 
compared with the residual of the other cells, 
calculated of the same way, to define the maximum 
residual in the domain. In the simulations, the attack 
angle, α, was set equal to zero. 

6.1 Initial conditions 
The initial conditions to the standard simulation of 
the studied algorithm are presented in Tab. 2. This is 
a standard case to the ideal gas flow submitted to a 

magnetic field normal to the symmetry line of the 
configuration under study. The Reynolds number 
was calculated from the data of [24]. 

Table 2 : Initial conditions of the simulations in 2D. 

Property Value 
M∞ 10.6 
By,∞ 0.15 T 
µM 1.2566x10-6 T.m/A 
σ∞ 1,000 ohm/m 

Altitude 40,000 m 
Pr 0.72 

L (2D) 2.0 m 
Re∞ (2D) 1.6806x106 

6.2. Results to inviscid flow in 2D – Mavriplis 
operator 
Figures 7 and 8 present the pressure contours 
calculated at the computational domain to the ideal 
gas flow, inviscid, submitted to a magnetic field. 

 
Figure 7 : Pressure contours (Mav/SS). 

 
Figure 8 : Pressure contours (Mav/AS). 
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As can be observed, the pressure field generated 
by [10] using the [11] artificial dissipation 
operator is more severe than that obtained with 
[12]. Moreover, the unstructured alternated 
discretization provides a more symmetrical 
pressure field than the same sense 
discretrization. 

 
Figure 9 : Mach number contours (Mav/SS). 

 
Figure 10 : Mach number contours (Mav/AS). 

 
 Figures 9 and 10 show the Mach number 
contours calculated at the computational domain by 
the [10] scheme employing the artificial dissipation 
models of [11] and [12], respectively. The Mach 
number field obtained by the [10] scheme generated 
at the AS condition is better predicted than as using 
the SS condition. Moreover, Fig. 9 presents a 
strength pre-shock oscillation, which is traduced by 
an asymmetrical solution. Good symmetry 
properties are observed in the 10 solution. The 
shock wave develops naturally, passing from a 
normal shock at the symmetry line to oblique shock 
waves along the body and finishing in a Mach wave, 
far from the geometry. 

 Figures 11 and 12 present the translational / 
rotational temperature distributions calculated at the 
computational domain. The [10] scheme with the 
alternated spatial discretization, AS, predicts a more 
symmetrical temperature field. However, the SS 
solution presents a more severe temperature peak. 

 
Figure 11 : Temperature contours (Mav/SS). 

 
Figure 12 : Temperature contours (Mav/AS). 

 
Figure 13 : Bx component of magnetic field (Mav/SS). 
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Figure 14 : Bx component of magnetic field (Mav/AS). 

 
 Figures 13 and 14 exhibit the contours of the Bx 
component of the magnetic field vector determined 
at the calculation domain. As can be observed, the 
Bx component is negative at the geometry lower 
surface and positive at the geometry upper surface, 
indicating that the magnetic field performs a curve 
around the geometry. The solution presented by the 
[10] scheme with the AS discretization is 
quantitatively more symmetrical than the respective 
one obtained with the SS discretization. 
 Figures 15 and 16 exhibit the magnetic vector 
field with induction lines to highlight the satisfied 
initial condition far ahead of the configuration and 
the distortion in these lines close to the blunt body. 
As can be observed, the magnetic induction lines are 
initially attracted to the magnetic field imposed at 
the blunt body walls and, close to the body, suffer 
distortion, getting round the configuration. It can be 
also observed that the solution with AS 
discretization is better defined than with SS 
discretization, ratifying the behavior observed in 
[15-16]. 

 
Figure 15 : Magnetic field and induction lines (Mav/SS). 

 
Figure 16 : Magnetic field and induction lines (Mav/AS). 

 
Figure 17 : -Cp distributions. 

 Figure 17 shows the –Cp distributions along the 
blunt body wall, due to the SS and AS discretization 
as using the [11] operator. As can be seen, the shock 
captured by the [10] scheme does not present any 
significant differences as using SS or AS 
discretizations. 
 
6.3. Results to inviscid flow in 2D – Azevedo 
operator 

Figures 18 and 19 exhibit the pressure contours 
calculated at the computational domain. The 
pressure field obtained by the [10] scheme 
employing the AS spatial discretization is more 
symmetrical than that obtained with the SS 
discretization. However, the former presents a more 
intense pressure peak than that obtained with the 
later. 
 Figures 20 and 21 present the Mach number field 
generated by the [10] scheme, in SS and AS spatial 
discretizations. Again is observed a pre-shock 
oscillation in front of the blunt body, which 
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damages the severely solution. The most 
symmetrical Mach number field is obtained with the 
AS discretization.  

 
Figure 18 : Pressure contours (Az/SS). 

 
Figure 19 : Pressure contours (Az/AS). 

 
Figure 20 : Mach number contours (Az/SS). 

 
It is important to note that both solutions present 
pre-shock oscillation problems, being more critical 
those observed in the solution with SS discretization. 

Good symmetry properties are observed in the AS 
solution. 

 
Figure 21 : Mach number contours (Az/AS). 

 
Figure 22 : Temperature contours (Az/SS). 

 
Figure 23 : Temperature contours (Az/AS). 

 
 Figures 22 and 23 present the translational / 
rotational temperature distributions calculated at the 
computational domain. The [10] scheme with the 
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AS spatial discretization presents a more 
symmetrical solution. The [12] artificial dissipation 
model predicts a more severe temperature field in 
the SS case. 
 Figures 24 and 25 exhibit the contours of the Bx 
component of the magnetic field vector determined 
at the calculation domain. As can be observed, the 
Bx component is negative at the geometry lower 
surface and positive at the geometry upper surface, 
indicating that the magnetic field performs a curve 
around the geometry. The solutions presented by the 
[10] scheme with the AS spatial discretization is 
more symmetrical than the SS discretization. 

 
Figure 24 : Bx component of magnetic field (Az/SS). 

 
Figure 25 : Bx component of magnetic field (Az/AS). 

 Figures 26 and 27 exhibit the magnetic vector 
field with induction lines to highlight the satisfied 
initial condition far ahead of the configuration and 
the distortion in these lines close to the blunt body. 
As can be observed, the magnetic induction lines are 
initially attracted to the magnetic field imposed at 
the blunt body walls and, close to the body, suffer 
distortion, getting round the configuration. The AS 

spatial discretization is more symmetrical than the 
SS spatial discretization. 

 
Figure 26 : Magnetic field and induction lines (Az/SS). 

 
Figura 27 : Magnetic field and induction lines (Az/AS). 

 
Figure 28 : -Cp distributions. 

 
 Figure 28 shows the –Cp distributions along the 
blunt body wall. As can be seen, the shock captured 
by the [10] scheme practically does not present any 
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differences in the SS and AS cases. Moreover, both 
–Cp profiles are very smooth, without pre-shock 
oscillations. 
 
6.4. Results to viscous flow in 2D – Mavriplis 
operator 

Figure 29 and 30 present the pressure contours 
calculated at the computational domain. The 
pressure contours obtained by the [10] scheme 
calculated at the AS discretization is more 
symmetrical than that obtained with the SS 
discretization. Good symmetry properties are 
observed in the AS solution. 

 
Figure 29 : Pressure contours (Mav/SS). 

 
Figure 30 : Pressure contours (Mav/AS). 

 
 Figures 31 and 32 exhibit the Mach number 
contours calculated at the computational domain by 
the [10] scheme employing the artificial dissipation 
model of [11]. The Mach number field obtained by 
the [10] scheme calculated at the AS discretization 
presents better symmetry properties than the SS 
discretization. The shock wave develops naturally, 
passing from a normal shock (frontal) to a Mach 

wave, through oblique shock waves. Both solutions 
present pre-shock oscillations, being in the AS case 
a more symmetrical distribution of the Mach 
number contours. 

 
Figure 31 : Mach number contours (Mav/SS). 

 
Figure 32 : Mach number contours (Mav/AS). 

 
Figure 33 : Temperature contours (Mav/SS). 
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 Figures 33 and 34 show the translational / 
rotational temperature distributions calculated at the 
computational domain. The [10] scheme solution 
obtained at the AS spatial discretization presents 
more symmetrical behavior. A significant difference 
between temperature fields is notable. The 
temperature peak at the SS case is near 22,000 K, 
whereas at the AS case is about 13,000 K. This 
difference could be due to the artificial dissipation 
model or due to the spatial discretization. 

 
Figure 34 : Temperature contours (Mav/AS). 

 
Figure 35 : Bx component of magnetic field (Mav/SS). 

 Figures 35 and 36 exhibit the contours of the Bx 
component of the magnetic field vector determined 
at the calculation domain. As can be observed, the 
Bx component is negative at the geometry lower 
surface and positive at the geometry upper surface, 
indicating that the magnetic field performs a curve 
around the geometry, equally observed in the 
solutions aforementioned. The best symmetry 
properties are observed in Fig. 36 (AS case). 
 Figures 37 and 38 exhibit the magnetic vector 
field with induction lines to highlight the satisfied 
initial condition far ahead of the configuration and 
the distortion in these lines close to the blunt body. 

As can be observed, the magnetic induction lines are 
initially attracted to the magnetic field imposed at 
the blunt body walls and, close to the body, suffer 
distortion, getting round the configuration. The 
same behavior was observed in the inviscid 
solutions obtained with the [10] scheme. 

 
Figure 36 : Bx component of magnetic field (Mav/AS). 

 
Figure 37 : Magnetic field and induction lines (Mav/SS). 

 
Figure 38 : Magnetic field and induction lines (Mav/AS). 
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Figure 39 : -Cp distributions. 

 
 Figure 39 shows the –Cp distributions along the 
blunt body wall. As can be seen, the shock captured 
by the [10] scheme using both spatial discretizations 
present the same behavior. 
 
6.5. Results to viscous flow in 2D – Azevedo 
operator 
Figures 40 and 41 present the pressure contours 
calculated at the computational domain. The 
pressure contours obtained by the [10] scheme in the 
AS spatial discretization is more symmetrical than 
that obtained with SS spatial discretization. Again 
the SS solution presents a pressure peak stronger 
than the respective obtained in the AS case.  

 
Figure 40 : Pressure contours (Az/SS). 

 
 Figures 42 and 43 exhibit the Mach number 
contours calculated at the computational domain by 
the [10] scheme employing the artificial dissipation 
model of [12]. The Mach number field obtained by 
the [10] scheme calculate at the AS spatial 
discretization is more symmetrical then the SS case. 

It is important to note that both solutions present 
problems of pre-shock oscillations, being the SS 
discretization as more critical. Good symmetry 
properties are observed in the AS case. 

 
Figure 41 : Pressure contours (Az/AS). 

 
Figure 42 : Mach number contours (Az/SS). 

 
Figure 43 : Mach number contours (Az/SS). 
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 Figures 44 and 45 show the translational / 
rotational temperature distributions calculated at the 
computational domain. The solution generated by 
the [10] scheme in the AS spatial discretization is 
more symmetrical than the SS spatial discretization. 
The same temperature difference is observable with 
the [12] dissipation model, which implies that such 
difference is due to the mesh discretization. As 
seems the AS solution is more realistic than the SS 
solution. The temperature peak occurs along the 
rectilinear walls, by the development of the heating 
of these by the consideration of viscous effects. 

 
Figure 44 : Temperature contours (Az/SS). 

 
Figure 45 : Temperature contours (Az/AS). 

 
 Figures 46 and 47 exhibit the contours of the Bx 
component of the magnetic field vector determined 
at the calculation domain. As can be observed, the 
Bx component is negative at the geometry lower 
surface and positive at the geometry upper surface, 
indicating that the magnetic field performs a curve 
around the geometry. The solutions presented by the 
[10] scheme calculated at the AS spatial 
discretization have meaningful symmetry properties. 

 
Figure 46 : Bx component of magnetic field (Az/SS). 

 
Figure 47 : Bx component of magnetic field (Az/AS). 

 
Figure 48 : Magnetic field and induction lines (Az/SS). 

 
 Figures 48 and 49 exhibit the magnetic vector 
field with induction lines to highlight the satisfied 
initial condition far ahead of the configuration and 
the distortion in these lines close to the blunt body. 
As can be observed, the magnetic induction lines are 
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initially attracted to the magnetic field imposed at 
the blunt body walls and, close to the body, suffer 
distortion, getting round the configuration. The 
same behavior was observed in the respective 
solutions obtained in the inviscid cases. However, 
the SS lines are not symmetrical, as is the case of 
the AS lines. 

 
Figure 49 : Magnetic field and induction lines (Az/AS). 

 
Figure 50 : -Cp distributions. 

 
 Figure 50 shows the –Cp distributions along the 
blunt body wall. As can be seen, the shock captured 
by the [10] scheme is practically the same for both 
spatial discretizations. 
 
6.6. Effects of the shock standoff distance 
with the increase of the magnetic field vector 
to inviscid simulations 
To these studies, the [10] scheme employing the 
artificial dissipation operator of [11], which presents 
better description of the flowfield and of the shock 
wave standoff distance than the [12] model, were 
analyzed. Variations of the By,∞ component between 
values from 0.00T (without magnetic field influence) 
until 0.40T, which has presented a meaningful 

increase in the shock standoff distance, were 
simulated. 
 Tables 3 and 4 exhibit the shock standoff 
distance to each value of the By,∞ component, in SS 
and AS cases. It is possible to conclude from these 
tables that the biggest shock standoff distance 
occurs to the maximum studied magnetic field 
magnitude, By,∞ = 0.40T, corresponding to a 
distance of 1.44m, in the former case, and 1.50m in 
the latter case. These qualitative results accords with 
the literature: [26]-[27]. 

Table 3 : Values of normal shock standoff distance due to 
variations in By,∞ - SS case. 

 

By,∞ (T) Xshock (m) 
0.00 0.95 
0.05 1.38 
0.10 1.38 
0.15 1.39 
0.20 1.39 
0.25 1.40 
0.30 1.40 
0.35 1.42 
0.40 1.44 

 
Table 4 : Values of the normal shock standoff distance 

due to variations in By,∞ - AS case. 
 

By,∞ (T) Xshock (m) 
0.00 1.00 
0.05 1.38 
0.10 1.32 
0.15 1.38 
0.20 1.40 
0.25 1.40 
0.30 1.42 
0.35 1.44 
0.40 1.50 

 
Figure 51 : Shock position as function of By,∞. 
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 Figure 51 exhibits a plot of the shock standoff 
distance as function of the By component of the 
magnetic field B. The values of By varies from 
0.00T to 0.40T. As can be observed, the tendency of 
Xshock is increased as By increases, reducing the 
thermal heating which acts at the body wall. In other 
words, as the shock position increases, the bow 
shock wave is positioned far ahead of the body, 
reducing, hence, the intensity of the shock wave 
over the body. With it, the pressure and temperature 
fields are reduced in relation to the original shock 
wave, resulting in less heating and less strength of 
the shock wave, originating a reduction on the drag 
coefficient. As can be seen, the AS case presents a 
larger increase of the shock position. 
 Figure 52 shows the curves involving the 
iterations to convergence as function of the By 
component of the magnetic field, for the two cases 
of triangulation. As can be observed, exist the best 
value of By at which the convergence to the steady 
state condition is optimum. It occurs in both 
triangulations. In the SS triangulation, the optimum 
value is 0.35T, whereas for the AS triangulation the 
optimum value is 0.30T. As can be also noted, the 
minimum number of iterations to convergence 
occurs to the case By = 0.00T (absence of magnetic 
field). 

 
Figure 52 : Iterations to convergence as function of By,∞. 

 
6.7. Aerodynamic coefficients of lift and drag 
Table 5 presents the aerodynamic coefficients of lift 
and drag obtained by the blunt body problem, with 
unstructured spatial discretization, to a formulation 
of ideal gas submitted to the influence of a magnetic 
field in two-dimensions, resulting, due to the Joule 
effects, in a non-ideal formulation. These 
coefficients take into account only the consideration 
of pressure term. The contribution of the friction 
term was not considered. 

 To the blunt body problem, a symmetrical 
configuration in relation to the x-axis, a zero value, 
or close to it, to the lift coefficient is expected. The 
solution closer to this result is due to the [10] 
scheme, in viscous flow, employing the SS spatial 
discretization and using the [11] artificial dissipation 
model. The maximum value of cD was also obtained 
to the viscous flow, employing the [10] numerical 
scheme with SS spatial discretization, for both 
dissipation operators. 

Table 5 : Aerodynamic coefficients of lift and drag to the 
blunt body unstructured problem. 

 

Studied case cL cD 
Inviscid/[11]/SS -2.04x10-2 0.405 
Inviscid/[11]/AS -2.56x10-2 0.400 
Inviscid/[12]/SS -2.04x10-2 0.405 
Inviscid/[12]/AS -2.56x10-2 0.400 
Viscous/[11]/SS -2.51x10-4 0.478 
Viscous/[11]/AS -7.68x10-3 0.475 
Viscous/[12]/SS -2.51x10-4 0.478 
Viscous/[12]/AS -7.68x10-3 0.475 

 
 Table 6 presents the drag aerodynamic 
coefficient calculated without the influence of a 
magnetic field and with the presence of a magnetic 
field (By,∞ = 0.15T). As can be observed, only the 
solutions obtained with the [11] dissipation operator 
are presented. The solutions with the [12] 
dissipation operator diverged. In all cases, the drag 
aerodynamic coefficient calculated with the 
presence of the magnetic field is superior in value to 
the same coefficient calculated without the presence 
of a magnetic field. This behavior is opposed to the 
expected. The reason for this behavior is due to the 
pre-shock oscillations which appear at the Mach 
contours, close to the body geometry. These 
oscillations represent strength pressure variations, 
which traduce in increase of the pressure field at the 
shock wave. So, the drag coefficient in this case is 
increased and becomes bigger than the same 
coefficients without magnetic field. 

Table 6 : Comparison between drag aerodynamic 
coefficients. 

 

Studied case cD 
(without B) 

cD 
(with B) 

Inviscid/[11]/SS 0.379 0.405 
Inviscid/[11]/AS 0.376 0.400 
Viscous/[11]/SS 0.449 0.478 
Viscous/[11]/AS 0.447 0.475 
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6.8. Computational performance 
Table 7 presents the computational data of the 
simulations with magnetic field influence over a 
blunt body configuration in two-dimensions. The 
table shows the studied cases, the CFL number of 
the simulations, the iterations to convergence, the 
orders of reduction in the magnitude of the 
maximum residual in the field and the values of k2 
and k4 employed in each simulation. All cases 
converged in three (3) orders of reduction of the 
maximum residual. The CFL number employed in 
all cases was 0.05, as also the values of k2 = 0.50 
and k4 = 0.01. The maximum number of iterations to 
convergence reached less than 16,000 iterations, 
with the solution of the [10] scheme employing both 
dissipation models.  
 It is important to emphasize that all viscous 
simulations were considered laminar, without the 
introduction of a turbulence model, although a 
raised Reynolds number was employed in the 
simulations. 
 

Table 7 : Computational data from the simulations with 
magnetic field acting on a blunt body. 

 
Studied 

case 
CFL Iterations Residual 

Drop 
k2 / k4 

I(1)/[11]/SS 0.05 9,698 3 0.50 / 
0.01 

I/[11]/AS  0.05 8,209 3 0.50 / 
0.01 

I/[12]/SS 0.05 9,698 3 0.50 / 
0.01 

I/[12]/AS 0.05 8,209 3 0.50 / 
0.01 

V(2)/[11]/SS 0.05 11,081 3 0.50 / 
0.01 

V/[11]/AS 0.05 15,980 3 0.50 / 
0.01 

V/[12]/SS 0.05 11,081 3 0.50 / 
0.01 

V/[12]/AS 0.05 15,980 3 0.50 / 
0.01 

(1): I = Inviscid; (2): V = Viscous. 
 
 Table 8 presents the computational costs of the 
[10] schemes in the formulation which considers the 
influence of the magnetic field, employing the 
artificial dissipation models of [11] and of [12], and 
considering SS and AS spatial discretization 
configurations. This cost is evaluated in seconds/per 
iteration/per computational cell. The costs were 
calculated employing a notebook with processor 
Intel Pentium Dual Core with 2.3GHz of clock and 
2.0GBytes of RAM, in the Windows 7 environment.  

Table 8 : Computational costs of the algorithms. 
 

Studied case Computational cost(1) 
I/Mav/SS 0.0000386 
I/Mav/AS 0.0000385 
I/Az/SS 0.0000386 
I/Az/AS 0.0000386 

V/Mav/SS 0.0000892 
V/Mav/AS 0.0000896 
V/Az/SS 0.0000893 
V/Az/AS 0.0000861 

(1) Measured in seconds/per iteration/per computational cell. 
 
 The cheapest algorithms was the [10] scheme, in 
the inviscid simulation, employing the [11] artificial 
dissipation model, whereas the most expensive was 
the [10] scheme, in any other case. In the viscous 
case, the cheapest scheme is due to the [10] scheme, 
using the [12] artificial dissipation model, in a 
viscous calculation. The most expensive is due to 
the [10] scheme using the [11] artificial dissipation 
model, in a viscous case. In this viscous case, the 
former is 4.07% cheaper than the latter.  
 
 
7 Conclusions 
 The present work aimed to implement a 
computational tool to simulation of inviscid and 
viscous flows employing a magnetic field 
formulation acting on a specific geometry. In this 
study, the Euler and the Navier-Stokes equations 
employing a finite volume formulation, following a 
unstructured spatial discretization, were solved. The 
aerospace problem of the hypersonic flow around a 
blunt body geometry was simulated. A spatially 
variable time step procedure is employed aiming to 
accelerate the convergence of the numerical 
schemes to the steady state solution. Effective gains 
in terms of convergence acceleration are observed 
with this technique ([13]-[14]). 
 The study with magnetic field employed the [10] 
algorithm to perform the numerical experiments. 
The [10] scheme is calculated by arithmetical 
average between the convective flux vectors at the 
flux interface, opposed to the arithmetical average 
between the conserved variable vector. The viscous 
flux vectors are calculated by arithmetical average 
of the conserved variables and of the gradients. The 
results are of good quality. In particular, it was 
demonstrated the effect that the imposition of a 
normal magnetic field in relation to the symmetry 
line of a blunt body geometry could cause the 
increase of the shock standoff distance, reducing, 
hence, the aerodynamic heating. This effect is 
important and can be explored in the phases of 
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aerospace vehicle project which does reentry in the 
atmosphere normal to the earth magnetic field. 
Another option would be the proper vehicle 
generates an oscillatory electrical field to yield a 
magnetic field in it and to induce the effect of the 
increase of the shock standoff distance. These are 
suggestions to verify. 
 In relation to the aerodynamic coefficient of lift 
reasonable values are obtained by the [10] scheme. 
In relation to the drag aerodynamic coefficients, 
none of the solutions generated by the magnetic 
field present values inferior to the respective ones 
without magnetic field. This behavior is dictated by 
the pre-shock oscillations that are present in Mach 
number contours. 
 The cheapest algorithm was the [10] scheme, in 
the viscous simulation, employing the artificial 
dissipation model of [12], whereas the most 
expensive was the [10] scheme, in the viscous 
simulation, employing the artificial dissipation 
model of [11]. In relative percentage terms, the 
former is 4.07% cheaper than the latter. 
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